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Many exchange-correlation functionals of the generalized gradient approximation �GGA� are available in the
literature. More particularly, during the last few years several research groups have proposed GGA functionals
for solids, which very often perform better �especially for the lattice constant� than the standard GGA func-
tional of Perdew, Burke, and Ernzerhof �PBE� �J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 �1996��. The improvement over PBE is not systematic, but trends among the different classes of solids
can be observed �P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 �2009��. A better understanding of
the trends obtained with the existing functionals can obviously be very helpful for the construction of more
accurate functionals, and in the aim of this we studied the distribution of the Wigner-Seitz radius rs �related to
the electron density �� and the reduced density gradient s in a few selected solids and identified the relevant
ranges of rs �rs�4� and s �s�2� in solids. We focus on the variation of the exchange-correlation energy with
respect to the unit-cell volume �dExc /d��, which determines the equilibrium lattice constant and identify the
“important regions” in the unit cell, where the differences of dExc /d� between two functionals are most
pronounced. In metallic systems, these important regions coincide with the spatial separation of semicore and
valence electrons, while for semiconductors �open structures� and insulators �inhomogeneous systems� the tails
of the valence electrons become equally important or even dominate.

DOI: 10.1103/PhysRevB.80.195109 PACS number�s�: 71.15.Mb, 71.15.Nc

I. INTRODUCTION

The Kohn-Sham version of density-functional theory1,2 is
the most common method for the calculation of the elec-
tronic properties of molecules and solids. Its success relies
on the fact that the system of interacting electrons is mapped
to a system of fictitious noninteracting electrons with the
same electron density, i.e., the equations to solve are one-
electron Schrödinger equations, and therefore very large sys-
tems can be calculated with a relatively low cost/accuracy
ratio. Within the Kohn-Sham method,2 the total energy of a
system of electrons is given by �all equations are given in
atomic units�

Etot = Ts +� vext�r���r�d3r

+
1

2
� � ��r���r��

�r − r��
d3rd3r� + Vnn + Exc, �1�

where Ts is the kinetic energy of a system of noninteracting
electrons, the three next terms represent the electron-nucleus,
electron-electron, nucleus-nucleus electrostatic energies, and
Exc is the exchange-correlation energy which can be decom-
posed into its exchange and correlation parts �Exc=Ex+Ec�.

For calculations which are done using an accurate solu-
tion of the Kohn-Sham equations �e.g., all-electron treat-
ment, no approximation for the potential, and large flexible
basis set�, the accuracy of the results depends solely on the
quality of the approximation used for Exc. The exact math-
ematical form of the exchange energy Ex is known �it is the
same as in Hartree-Fock theory�, but it is a functional which
depends explicitly on the orbitals �i and leads to calculations
which are relatively expensive, especially for solids. For the
correlation Ec, no exact form exists which can be used for
practical calculations, and calculations using an accurate ab

initio correlation functional �e.g., derived from perturbation
theory� are very rare and expensive �see, e.g., Refs. 3 and 4�.
Nowadays, the standard functionals for calculations on mo-
lecular systems are the hybrid functionals.5 These function-
als, which consist of a mixture of Hartree-Fock and semilo-
cal exchange �and are intrinsically empirical6�, are very good
for the structural and thermochemical properties of mol-
ecules. Nevertheless, new types of functionals yielding
promising results are continued to be proposed �see, e.g.,
Refs. 6–10�. For solids, the hybrid functionals do not consti-
tute the standard choice, and only recently papers reporting
extensive tests of hybrid functionals on solids have appeared
�see, e.g., Refs. 11–13�. The hybrid functionals often perform
well, in particular �due to the potential which is orbital de-
pendent� for the calculation of band gaps12,13 for which the
use of the local-density approximation �LDA� �Ref. 2� or
generalized gradient approximation �GGA� is not appropriate
due to the local nature of these approximations.14 However,
we mention two drawbacks of hybrid functionals for solids:
their inadequacy for metallic systems13,15 and the high cost,
which is required for the evaluation of the Hartree-Fock en-
ergy and potential for solids. Thus, the LDA and GGA func-
tionals remain the most widely used functionals in the solid-
state community, where real materials science problems can
require unit cells containing several hundreds of atoms.

The first GGA functional that has been used extensively
for solids is PW91.16 It has been replaced by PBE,17 which
until now has been the standard functional for calculations of
solids. PBE belongs to the class of parameter-free function-
als, i.e., it does not contain any parameter that was deter-
mined in order to reproduce experimental or accurate ab ini-
tio data. However, very recently several GGA functionals
were proposed by different research groups, and some of
them were especially designed to work well for the geometry
of solids.18–24 In Refs. 25–29 it has been shown that these
functionals lead to very small signed mean error, indicating
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that the typical underestimation �overestimation� of LDA
�PBE� functionals has been significantly reduced. However,
the improvement is not systematic, but trends among the
different classes of compounds have been observed.25,28 We
also mention the functionals of the meta-GGA
approximation,30–32 which are more flexible due to the use of
the kinetic-energy density. In particular, the recently pro-
posed functional revTPSS of Perdew et al.32 was shown to
give excellent results for molecules and solids.

In the present work we have studied the distribution of the
electron density and the reduced density gradient in several
solids and determined which region of space is energetically
important for the lattice constant. The enhancement factors
�see below for the definition� of the considered GGA func-
tionals will be studied in detail. We note that previous analy-
ses of GGA functionals can be found in Refs. 29 and 33–40,
which will be briefly summarized in the last section of this
work.

The paper is organized as follows. In Sec. II, the studied
functionals are described. In Sec. III, a detailed analysis of
the electron-density distribution and of the performance of
the functionals for a few selected solids is given. In Sec. IV,
additional discussions and the summary of our work are
given.

II. FUNCTIONALS

In this section, a short summary of the ideas behind the
construction of the functionals and their performances is
given.

A. LDA

The LDA functional has the following form:

Exc
LDA��� =� �xc

LDA
„��r�…d3r , �2�

where the exchange-correlation energy per volume unit �xc
LDA

is a function of the electron density � and is usually chosen
to be the one of the uniform electron gas. The exchange part
is given by �x

LDA=−�3 /4��3 /��1/3�4/3.41 For the correlation
part we chose the functional PW92,42 which is one of the
most accurate fits of quantum Monte Carlo data of the uni-
form electron gas.43 This functional yields relatively good
results for the geometry of solids and is still among the best
for some classes of solids, e.g., the 5d-transition metals �see,
e.g., Refs. 25, 27, and 28�, but it fails badly for the atomiza-
tion energies of molecules and solids.

B. GGA

For a better description of inhomogeneous systems, in
particular atoms and molecules, the use of the gradient of the
electron density revealed to be very helpful. This has led to
the development of functionals of the so-called GGA family,

Exc
GGA��� =� �xc

GGA
„��r�,���r�…d3r

=� �x
LDA

„rs�r�…Fxc„rs�r�,s�r�…d3r , �3�

where Fxc�rs ,s�=Fx�s�+Fc�rs ,s� is the enhancement factor,
rs= �3 / �4����1/3 is the Wigner-Seitz radius, and s
= ���� / �2�3�2�1/3�4/3� is the reduced density gradient.
PW86,44,45 BLYP,46,47 and PW91 �Ref. 16� are the first GGA
functionals which have been used extensively for practical
calculations. In the literature, two classes of GGA function-
als can be found: �a� the empirical functionals, whose param-
eters were determined by fitting experimental or ab initio
data �see, e.g., Ref. 48�, and �b� the parameter-free function-
als, whose parameters were determined in order to satisfy
mathematical relations which are known to hold for the exact
functional �see, e.g., Ref. 17�. However, it should be noted
that all parameter-free functionals still contain arbitrary
choices such as the analytical form chosen to represent Fxc or
the choice of constraints that are satisfied. In Fig. 1 we show
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FIG. 1. �Color online� Enhancement factors Fxc plotted against
the reduced density gradient s for different values of rs. The hori-
zontal line corresponds to LDA.
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the enhancement factor Fxc of the functionals considered in
this work as a function of s for several values of rs.

1. PBE

The PBE functional is nowadays the most commonly used
functional for solid-state calculations. It was designed to sat-
isfy several conditions that are obeyed by the exact func-
tional and it contains no empirical parameters.17 In most
cases, PBE gives similar results as PW91 �Ref. 16� �its pre-
decessor�, but it has a simpler analytical form. Some of the
conditions satisfied by PBE are the correct uniform electron
gas limit �i.e., LDA is recovered when s=0�, the Lieb-Oxford
bound �Ex�Exc�−1.679��4/3d3r�,49 and the LDA linear re-
sponse. The enhancement factor for exchange is given by

Fx
PBE�s� = 1 + � −

�

1 +
	

�
s2

, �4�

where �=0.804 and 	=0.219 51. Note that 	 is approxi-
mately two times larger than the value 	GE=10 /81 derived
from the second-order gradient expansion �GE� of the ex-
change energy at the limit of a slowly varying electron
density.50 At this limit, the behavior of the correlation func-
tional is determined by the parameter 
, which has the value

=
GE=0.0667 �the second-order coefficient of the gradient
expansion of the correlation energy�. Since 	 and 
 are re-
lated by 	=
�2 /3, PBE satisfies the LDA linear response.17

For values of rs and s, which are relevant for solids around
the equilibrium geometry �rs ,s�3�, Fxc

PBE is the largest en-
hancement factor among the considered GGAs �see Fig. 1�.
A good feature of the PBE functional is that it performs
equally well for finite and infinite systems. Concerning the
lattice constant of solids, there are GGA functionals �see be-
low� which, on average, perform better than PBE. Neverthe-
less, there are classes of solids for which PBE remains the
best �e.g., solids containing 3d-transition elements25,27,28�. In
the meantime, many other GGA functionals have been pro-
posed, which modified the PBE functional form either by
simply changing the values of the parameters20,23,51–54 or by
modifying the mathematical form of Eq. �4�.19,21,22,24,55–57

Note that already in 1986, Becke proposed an exchange en-
hancement factor given by Eq. �4�, but with �=0.9672 and
	=0.2351.58

2. WC

Wu and Cohen �WC� �Ref. 19� proposed a GGA exchange
functional �used in combination with PBE correlation func-
tional� that was shown to improve over LDA, PBE, and the
meta-GGA TPSS �Ref. 31� for the equilibrium volume and
bulk modulus of solids and to yield jellium surface exchange
energies which are as accurate as TPSS values. The good
performance of the WC functional for the lattice constant of
solids was later confirmed using much larger sets of
solids,25,28 but it was also shown that it slightly worsens the
atomization energies of molecules with respect to PBE.25

The WC exchange enhancement factor is given by

Fx
WC�s� = 1 + � −

�

1 +
x�s�

�

, �5�

where �=0.804 �same as PBE� and

x�s� =
10

81
s2 + �	 −

10

81
	s2e−s2

+ ln�1 + cs4� , �6�

where 	=0.219 51 �same as PBE� and c=0.007 932 5. For
all values of s, Fx

WC�Fx
PBE �see Fig. 1�, but by construction

Fx
PBE and Fx

WC have the same behavior for s→0 and s→
.
Note that Wu and Cohen wrongly claimed �see the comment
on Ref. 19 and the reply� that x�s� recovers the fourth-order
parameters of the fourth-order gradient expansion of the ex-
act exchange functional in the limit of a slowly varying
density.59 Their error is due to an misinterpretation of Eq. �7�
in Ref. 31.

3. PBEsol

This functional has the same analytical form as the PBE
functional, but the value of two parameters were changed in
order to satisfy other conditions.20 The value of 	 �Eq. �4��
was set to 	=	GE=10 /81 to satisfy the second-order gradi-
ent expansion of the exchange energy, while in correlation, 

�see Sec. II B 1� was chosen in order to reproduce the accu-
rate TPSS values of the surface exchange-correlation energy
of jellium �as done previously for the AM05 functional; see
Sec. II B 4�. This leads to an enhancement factor Fxc

PBEsol,
which is closer to LDA than the PBE and WC enhancement
factors �see Fig. 1� are. Actually, PBEsol was designed to be
more accurate than PBE for solids and surfaces,20 which has
been confirmed for solids by several studies.22,23,27–29 How-
ever, since 	=	GE, PBEsol performs badly for the thermo-
chemistry of molecules and solids21,22,29 for which a value of
	
2	GE is more appropriate.21,29,60

4. AM05

While many GGAs were constructed by fitting parameters
to experimental data or by satisfying universal mathematical
conditions, the AM05 functional18,61 was developed by com-
bining functionals from different model systems �the uniform
electron gas �LDA� and the local Airy approximation �LAA�
�Ref. 62��. They are merged using an index �X� for taking the
local nature of the system into account. For bulklike regions
�small values of s�, LDA is used, while for surfacelike re-
gions �large values of s�, the LAA functional is used. The
exchange and correlation energies per unit volume are given
by

�x
LAA��,s� = �x

LDA����X�s� + �1 − X�s��Fx
LAA�s�� , �7�

�c
LAA��,s� = �c

LDA����X�s� + �1 − X�s���� , �8�

where �=0.8098 and X�s�=1−�s2 / �1+�s2� with �=2.804
�� and � were fitted to the exchange-correlation surface en-
ergy of the jellium model�. The analytical form of Fx

LAA can
be found in Ref. 18. From Fig. 1, we can see that the AM05
enhancement factor is clearly different from the other GGAs
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considered in this work. For rs=0 bohr �i.e., exchange only�,
Fx

AM05 is the lowest one until s
4.5, while for s larger than

5 it is the largest. Actually, Fx

AM05→
 for s→
 �thus, the
Lieb-Oxford bound is not satisfied�. From Fig. 1 we can also
see that with increasing rs the crossings between Fxc

AM05 and
the other enhancement factors tend to values around s
=1–1.5. Originally, this functional was designed to perform
well for systems with surfaces,18 but very recently it has
been shown to be, on average, more accurate than PBE for
the lattice constant for many classes of solids26–29 and as
accurate as the WC, PBEsol, and SOGGA �Ref. 21�
functionals.28

III. ANALYSIS

In this section, the spatial distribution of rs �related to the
electron density �� and s �related to the gradient of the elec-
tron density ��� and the exchange-correlation energy Exc are
analyzed in detail for a few selected solids. The solids are
lithium �bcc �A2��, vanadium �bcc �A2��, and FeAl �cesium
chloride �B2�� as examples for simple and 3d metals and an
intermetallic compound; silicon �diamond �A4�� and LiF �so-
dium chloride �B1�� representing semiconductors and ionic
systems, respectively; and graphite �hexagonal �A9�� whose
hexagonal layers are weakly bound. The theoretical and the
experimental equilibrium lattice constants of these systems
�shown in Table I� were taken from Ref. 28. In the case of
graphite, the in-plane lattice constant was kept fixed at the
experimental value of 2.464 Å, i.e., only the interlayer dis-
tance c was optimized. The experimental values of the cubic
systems were corrected for the zero-point anharmonic expan-
sion �see Refs. 28, 63, and 64 for details�. From Table I we
can see that, for all systems except Li and graphite, LDA and
PBE give the smallest and largest lattice constants, respec-
tively, while for Li and graphite the WC and AM05 lattice
constants are larger than the PBE ones.

Regarding the trends observed in the lattice constants for
these solids, in the following we will try to answer questions
like: �a� why does the functional F1 yield a lattice constant
that is larger than the one calculated with functional F2, �b�
what are the regions in space which are energetically impor-
tant for the lattice constants, and �c� which values of rs and s
are relevant in solids. Since the enhancement factor of GGA
functionals �see Eq. �3�� depends on rs and s, an analysis of
these two quantities can certainly help us to understand the
behavior and performance of GGA functionals. However, as

discussed in detail below, it is particularly important to con-
sider the variations of rs, s, and Exc with respect to the unit-
cell volume �. Actually, dExc /d� is the quantity that is di-
rectly related to the value of the equilibrium lattice constant.

For our analysis we will consider averages of rs and s
over a certain region in space defined as follows:

f̄ =
1

V
�

V

f�r�d3r , �9�

where f =rs or s, and V is the volume of, e.g., the unit cell or
an atomic sphere. Defining r̄s and s̄ with Eq. �9� makes sense
only for solids with a finite unit cell, while for molecular
systems these averages are zero if V represents the whole
space. Note that, in Refs. 34–37, an energy-weighted defini-
tion for r̄s and s̄ was used.

The calculations were done with the WIEN2K code65 which
solves the Kohn-Sham equations using the full-potential �lin-
earized� augmented plane-wave and local orbitals
�FP-�L�APW+lo� method.66–68 The integrations in the Bril-
louin zone were done with a k mesh of 21�21�21 for the
cubic solids and 13�13�5 for graphite. A value between 8
and 10 was chosen for RMT

minKmax �the product of the smallest
atomic sphere radius RMT and the plane-wave cutoff param-
eter Kmax�, which determines the size of the basis set.

An important detail concerning the way the analysis is
done is the following. For all solids in Table I except graph-
ite, we checked that the lattice constant given by a specific
functional is insensitive to self-consistency effects, i.e., for
the evaluation of the total energy it hardly matters whether
the electron density stems from the corresponding potential
or from another one �in all cases, the change in the lattice
constant is less than 0.001 Å�. Thus, for these solids we
have simplified the analysis and used the same electron den-
sity �the one obtained from the PBE potential� for the com-
parison of the exchange-correlation energies obtained by dif-
ferent functionals and the figures. In particular, it means that
the difference in total energy between two functionals F1
and F2 is given only by the difference in the exchange-
correlation energy,

Etot
F1 − Etot

F2 = Exc
F1 − Exc

F2. �10�

Concerning graphite �Sec. III F�, the potential-energy curves
were obtained from self-consistent calculations and the PBE
electron density was used for the figures showing rs and s.

TABLE I. Equilibrium lattice constant a0 �in Å� for Li, V, FeAl, Si, and LiF, and c0 for graphite �Ref. 28�.
The references for the experimental values can be found in Ref. 28.

Method Li V FeAl Si LiF Graphite

LDA 3.363 2.932 2.812 5.407 3.911 6.7

PBEsol 3.433 2.963 2.840 5.438 4.006 7.3

WC 3.449 2.965 2.843 5.437 4.012 9.6

AM05 3.456 2.961 2.839 5.439 4.038 �15

PBE 3.435 3.001 2.869 5.475 4.068 8.8

Expt. 3.451 3.024 2.882 5.415 3.960 6.71
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A. Lithium

As a first example we analyze the simple metal Li in the
bcc structure. Figure 2 shows the distribution of rs and s
along the cubic unit-cell diagonal at the equilibrium volume.
In the interstitial region �2�distance�3.5 bohr� s is basi-
cally zero and therefore only negligible differences between
LDA and the various GGAs are expected in this region, since
they all reduce to LDA for s=0. Inside the atomic sphere, the
averages of rs and s are about 2.66 bohr and 0.56, respec-
tively, and, by looking at the enhancement factors �Fig. 1�,
we would expect PBEsol, WC, and AM05 functionals to
yield lattice constants which are in between the LDA and
PBE values. However, this is not the case �Table I�: AM05
and WC lattice constants are larger than the PBE value.
Therefore, a simple comparison of Fxc �as sometimes done�
obviously does not explain the observed equilibrium lattice
constants. A more detailed analysis is necessary in order to
understand these trends.

The total and the exchange-correlation energies are plot-
ted against the unit-cell volume � in Fig. 3. Although the
contribution from Exc to the total energy is relatively small, it
is this small contribution that determines the lattice constant.
We can also see that the variation of Exc with respect to � is
two orders of magnitude larger than for the total energy.
Actually, it is the slope dExc /d� �and not the magnitude of
Exc� that determines the equilibrium geometry.

In Table II we show the values of �Exc /��= �Exc��2�
−Exc��1�� / ��2−�1�, where Exc��1� and Exc��2� are the
exchange-correlation energies at the smallest ��1� and larg-
est ��2� considered unit-cell volumes, respectively.
�Exc /�� is a good approximation to the slope dExc /d�,
which is nearly a linear function of � �see Fig. 3�. As ex-
pected, these slopes reflect perfectly the trends observed in
the lattice constants of Li: LDA leads to the largest slope and
thus the smallest lattice constant, while AM05 has the small-
est slope and thus the largest lattice constant. The PBE and
PBEsol values, which are very similar, are in between.

The next step is to study the spatial decomposition of Exc.
Figure 3 shows the contributions to Exc coming from the
integration inside the atomic sphere �RMT

Li =2.5 bohr� and the
interstitial region.

The major contribution to Exc comes from inside the
atomic sphere, whereas the contribution from the interstitial
region is an order of magnitude smaller due to the low den-
sity. However, for equilibrium lattice constants, we are inter-
ested �as mentioned before� in the change of Exc with respect
to the unit-cell volume �. From Fig. 3 we can see that the
large linear increase inside the atomic sphere is partially can-
celed by the interstitial contribution.

Let us now investigate the difference between the slopes
�Exc /�� of two functionals F1 and F2. This difference is
negligible in the interstitial region, which is easy to under-
stand from Fig. 2. We see the clear minimum of rs at the
position of the atoms, but a rather constant value of rs in the
interstitial region, which shows the free-electron-like behav-
ior of Li and originates from the superposition of the diffuse
valence-electron densities of the atomic sites. Consequently,
s is nearly zero in the interstitial region, which explains why
this region does not contribute to the difference in slope
�Exc /�� between two GGA functionals that both reduce to
LDA for s=0.

In order to make a more detailed study of �Exc /�� inside
the atomic sphere, we varied the limit rmax of the radial in-

TABLE II. Values �in mRy /bohr3� of the slope �Exc /�� �see
text for definition� for Li and V.

Functional Li V

LDA 1.05 11.40

PBEsol 1.00 10.98

WC 0.99 10.95

AM05 0.98 11.00

PBE 1.00 10.50

FIG. 2. Top: r2� of 1s �semi�core and 2s ,2p valence states in
bcc lithium �inside the atomic sphere�. Bottom: rs and s along the
�0,0 ,0�→ �1 /2,1 /2,1 /2� path at the equilibrium volume. The im-
portant region �see text for definition� is illustrated by a hatched
rectangle from 0.93 to 1.74 bohr and the atomic sphere radius �RMT

Li �
of the atom at 0 is indicated by a line at 2.5 bohr.

FIG. 3. �Color online� Variation of the total and exchange-
correlation energies of lithium with respect to the unit-cell volume
� �AM05 functional with PBE electron density�. Exc has been split
into its contribution coming from the atomic sphere and the inter-
stitial region. Etot, Exc

total, Exc
sphere, and Exc

int are shifted by 14.87, 3.57,
3.37, and 0.20 Ry, respectively.
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tegration. This allows us to identify which region around the
nucleus is the most important for the determination of the
equilibrium lattice constant. The function
�Exc

F1−F2�rmax� /��=�Exc
F1�rmax� /��−�Exc

F2�rmax� /�� ap-
proximates the difference in the slope of Exc with volume for
two functionals F1 and F2 as a function of the integration
radius rmax. In Fig. 4 we can see that the largest difference in
the slope �Exc /�� between the functionals �F1,F2�
= �PBE,AM05� or �F1,F2�= �PBE,PBEsol� originates from
within a distance of about 1–1.75 bohr from the nucleus.
Similar plots for other combinations with PBE have been
analyzed and led us to define an important region which
ranges from r1=0.93 bohr to r2=1.74 bohr. It is indicated in
Fig. 2 as hatched area and mainly determines the difference
between the slopes �Exc /�� of two functionals and thus the
ordering of the lattice constants. In order to gain further in-
sight about the origin of this important region, Fig. 2 also
shows r2� for the Li-1s and Li-2s ,2p states inside the atomic
sphere of lithium. We can easily identify the important re-
gion as the region between the Li-1s �“semicore”� and 2s ,2p
�valence� states and corresponding to the atomic shell struc-
ture. As long as the Li-1s state �in r2�� dominates, both for
PBE−AM05 and PBE−PBEsol �to a smaller extent�
�Exc

F1−F2�rmax� /�� increases; but when the Li-2s ,2p states
gets larger �rs is larger�, �Exc

F1−F2�rmax� /�� decreases. For
AM05, the first part dominates, leading overall to a smaller
slope �Exc /�� �see Table II� than PBE, and thus a larger
lattice constant. On the other hand, for PBEsol, both regions
nearly cancel, which makes PBE and PBEsol lattice con-
stants very similar. It is this region that determines the “size”
of an atom and thus the equilibrium lattice constant of the
solid, and not the “overlap region” between the valence or-
bitals centered at different atomic sites.

After having identified the region of space, which is en-
ergetically the most important for the determination of the
lattice constant, we will study the different contributions to
the slope dExc /d�. As briefly discussed above, looking at
Fxc alone is not enough to understand the trends in the lattice
constant for Li, and thus a more systematic study is neces-
sary.

The exchange-correlation energy density integrated within
the important region �defined by r1 and r2 and of volume V
= �4 /3���r2

3−r1
3�� can be approximated by considering the

averages r̄s and s̄ �Eq. �9�� within V �see Table III�,


�xc�V = �
V

�xc„rs�r�,s�r�…d3r � V�xc�r̄s, s̄� = − VA
Fxc�r̄s, s̄�

r̄s
4 ,

�11�

where A= �3 /4��3 /��1/3�3 / �4���4/3. The derivative of 
�xc�V
with respect to the unit-cell volume � is given by

d
�xc�V

d�
= VA�G1 + G2 + G3� , �12�

where

G1 = � 4

rs
5

drs

d�
Fxc�

rs=r̄s,s=s̄

, �13�

G2 = �−
1

rs
4

�Fxc

�rs

drs

d�
�

rs=r̄s,s=s̄

, �14�

G3 = �−
1

rs
4

�Fxc

�s

ds

d�
�

rs=r̄s,s=s̄

. �15�

From Eqs. �12�–�15� we can see that d
�xc�V /d� depends
on rs, s, Fxc, and the derivatives drs /d�, ds /d�, �Fxc /�rs,
and �Fxc /�s. Since we chose to use the same electron density
for all functionals, s, rs, drs /d�, and ds /d� are also the
same for all functionals, and only Fxc �in G1�, �Fxc /�rs �in
G2�, and �Fxc /�s �in G3� differ from one functional to an-
other. Therefore, the differences between the lattice constants
obtained by the various functionals are only due to Fxc and
its derivatives �Fxc /�rs and �Fxc /�s.

Considering, for instance, the experimental unit-cell vol-
ume � we can use the values of r̄s and s̄ �and their � de-
rivatives� to calculate G1, G2, and G3 �results in Table IV�.
Note that G2 �related to �Fxc /�rs� is of least importance,
while the main contribution comes from G1 �related to Fxc�.
From G1 alone, however, one would conclude that LDA
should give the largest and PBE the smallest lattice constant,
which is not true. Even though G2 and G3 �related to
�Fxc /�s� are two and one order of magnitude smaller than
G1, they are important. Indeed, G3 does not contribute for

TABLE III. The important region �see text for definition� around
the nucleus defined by the interval �r1 ,r2� �r1 and r2 are radial
distances from the nucleus�. r̄s and s̄ are the averages of rs and s
inside �r1 ,r2� at the equilibrium lattice constants. r1, r2, and r̄s are
expressed in bohr.

Solid �r1 ,r2� r̄s s̄

Li �0.93, 1.74� 2.54 1.51

Na �1.54, 2.47� 2.90 1.46

K �1.69, 3.40� 3.17 1.35

Rb �1.93, 3.68� 3.23 1.37

FIG. 4. �Color online� �Exc
F1−F2�rmax� /�� for lithium with F1

=PBE and F2=AM05 �solid line� and F1=PBE and F2=PBEsol
�dotted line� plotted as a function of the integration radius rmax. The
values of �Exc

F1−F2 /�� in the interstitial region and the whole unit
cell are indicated by “Int” and “Total,” respectively.
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LDA and this causes the largest slope d
�xc�V /d� and thus
the smallest lattice constant for LDA. Also, adding G2 and
G3 to G1 makes Gtot=G1+G2+G3 for WC and AM05 smaller
than for PBE, which is in agreement with the ordering of the
lattice constant of Li �Table I�. Overall, the trends in the
slopes �Exc /��, and thus the lattice constants, are fairly
well reproduced by Gtot: LDA and AM05 are the extrema,
the others are in between, and WC is between PBE and
AM05.

Table III also shows the important region and the averages
r̄s and s̄ for the other elements of group IA. Note that the
important region is always located in a region separating the
outermost core from the valence electrons. Therefore, the
distance from the nucleus to the important region is larger for
heavier elements. The inner-core electrons do primarily not
cause different lattice constants for different functionals. Fur-
thermore, we can see an increase in r̄s with the nuclear
charge Z which stems from the more diffuse orbitals, while s̄
is reduced from Li to K �which has a similar values as for
Rb�.

B. Vanadium

Vanadium has been chosen to represent a 3d transition-
metal element. According to Table I, all tested functionals
lead to too small lattice constants compared to experiment.
The relative error of LDA is about 3%, while PBE is the
most accurate �less than 1% underestimation�. The relative
errors of WC, AM05, and PBEsol �which lead to very similar
lattice constants� are in between LDA and PBE with about
2% of the relative error. Figure 5 shows the evolution of rs
and s along the shortest path between two V atoms �at the
equilibrium geometry�. Since vanadium is not a free-
electron-like metal as lithium, rs does not reach a constant
value and s is not zero in the interstitial. The reduced density
gradient s nicely shows the shell structure of the atom and,
similar to Li, a maximum at 1.5 bohr which lies in the range
where the 3s ,3p semicore �but also the 3d valence� electrons

are separated from the 4s ,4p valence electrons. The maxi-
mum value of s, however, is about a factor of 2 smaller than
for Li. Also, note that the maxima in the radial density r2�
for the semicore 3s ,3p and the valence 3d states fall very
close together, but the tails of the 3d orbitals are more long
ranged. A similar plot for a 5d element like tantalum shows
that the 5d maximum is further out compared to the 5s ,5p
maxima and this difference between a 3d and a 5d metal may
explain the different behavior of the functionals for 3d and
5d elements, where, e.g., PBE shows a clear underbinding
�too large lattice constants� for 5d, while LDA shows a pro-
nounced overbinding �too small lattice constants� for 3d sys-
tems.

The same analysis that was done for lithium in the pre-
ceding section has been carried out for vanadium. The im-
portant region V �i.e., the region where the slopes �Exc /��
of two functionals differ the most� has been identified to be
between 1.10 and 2.07 bohr as indicated in Fig. 5, while the
interstitial contribution is again nearly zero. An analysis of
the different contributions to d
�xc�V /d� �Eqs. �12�–�15�� at
the equilibrium geometry �r̄s=1.36 bohr and s̄=0.76 inside
V� shows �Table IV� that again G1 �Fxc� is the largest contri-
bution, but the ordering of the equilibrium lattice constants
cannot be deduced solely from it. For that purpose it is also
necessary to consider G2 ��Fxc /�rs� and G3 ��Fxc /�s�. LDA
�PBE� leads to the largest �smallest� values of Gtot, while
PBEsol, WC, and AM05 lie inside this bound. This ordering
reflects the trends observed in the lattice constant. Note that
here G2 and G3 are of the same order of magnitude, while for
lithium G2 was one order of magnitude smaller than G3.

C. FeAl

We have chosen FeAl as an example of a metallic binary
compound. From Table I, we can see that for the lattice con-
stant the best agreement with experiment is obtained with
PBE which slightly underestimates a0, while the other func-

TABLE IV. The values of G1 �Eq. �13��, G2 �Eq. �14��, G3 �Eq.
�15��, and their sum Gtot for Li and V at the equilibrium geometry.
The values are in mRy /bohr3.

Functional G1 G2 G3 Gtot

Li

LDA 0.555 −0.013 −0.000 0.542

PBEsol 0.577 −0.006 −0.079 0.492

WC 0.582 −0.005 −0.096 0.481

AM05 0.584 −0.011 −0.098 0.475

PBE 0.612 −0.005 −0.122 0.486

V

LDA 14.456 −0.288 −0.000 14.168

PBEsol 14.527 −0.237 −0.489 13.801

WC 14.668 −0.209 −0.630 13.830

AM05 14.402 −0.254 −0.459 13.690

PBE 14.877 −0.209 −1.256 13.412

FIG. 5. Top: r2� of 3s, 3p semicore, 3d, and 4s ,4p valence
states of vanadium �inside the atomic sphere�. Bottom: rs and s
along the �0,0 ,0�→ �1 /2,1 /2,1 /2� path at the equilibrium lattice
constant. The important region �see text for definition� is illustrated
by the hatched rectangle from 1.10 to 2.07 bohr and the atomic
sphere radius �RMT

V � of the atom at 0 is indicated by a line at 2.29
bohr.
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tionals lead to very large underestimations. By comparing
the FeAl results with the results for the pure elements Fe and
Al �see Table I and Fig. 1 of Ref. 28�, we can see that the
trends in the results for FeAl follow closely the trends for
bcc Fe �all functionals underestimate a0�, while for fcc Al,
LDA and PBE lead to clear underestimation and overestima-
tion, respectively, and the other functionals yield very accu-
rate lattice constants.

In order to understand why FeAl and Fe show similar
trends we investigated the change in slope �Exc /�� be-
tween two functionals ��Exc

F1−F2 /��� as a function of the
integration radius rmax inside the Fe and Al atomic spheres.
From Fig. 6, which shows �Exc

F1−F2�rmax� /�� for the case
F1=PBE and F2=PBEsol �using the PBE electron density�,
we can see that the important region is between 1 and 2 bohr
for Fe �the region of the tails of the 3d orbitals as well as the
separation between the 3s ,3p core from 4s valence elec-
trons� and between 1.1 and 1.5 bohr for Al. We can also see
that the contribution from the Fe sphere is three times larger
than the contribution from the Al sphere, which explains the
fact that the trends in a0 for FeAl and pure Fe are very
similar. Note that the contribution coming from the intersti-
tial region is almost zero. Finally, we mention that the maxi-
mum values of s in the Fe and Al atomic spheres are 0.8 and
1.4, respectively.

D. Silicon

The structures of the solids we have considered so far are
fairly close packed, while the one of silicon is open with
large empty regions of space. From Table I we can see that
the LDA lattice constant is close to the experimental one,
while the GGAs �PBE in particular� clearly overestimate a0.
From Fig. 7, which shows the difference in slope between
two functionals �Exc

F1−F2�rmax� /�� for �F1,F2�
= �PBE,PBEsol� and �F1,F2�= �PBE,AM05�, we can see
that the important region inside the atomic sphere can be
clearly estimated to be between 0.7 and 1.5 bohr, while for

an integration radius rmax between 1.5 and RMT
Si =2.1 bohr,

�Exc
F1−F2�rmax� /�� is rather constant. The important region

corresponds to the separation between 2s ,2p core and 3s ,3p
valence states. Note that there is little difference between
PBEsol and AM05 functionals, which is expected since both
functionals lead to quasi-identical lattice constants.

However, as we can see from Fig. 7 and Table V, the
interstitial contribution to �Exc

F1−F2 /�� can be as large as the
one from the atomic sphere �in contrast to the previously
studied solids� and, in order to understand this, we show a
two-dimensional plot of the reduced density gradient s in
Fig. 8. Inside the atomic spheres, s becomes as large as 1.3
�in the core-valence separation region�, while in the bonding
region between two neighboring Si atoms, s is very small.
However, in the large empty regions of this open structure,
the tails of the valence orbitals lead to an increase in s up to
0.9. Thus, these large interstitial regions with relatively large
values of s lead to a value of �Exc,int

F1−F2 /�� of the same order
as �Exc,sph

F1−F2 /�� �Table V�. We mention that for isostructural
heavier materials such as Ge or GaAs, the maximum value of
s in the core-valence region is smaller �e.g., 0.9 in GaAs�
than in Si, but larger in the interstitial region �e.g., 1.2 for
GaAs�. The fact that s is larger in the interstitial region can
explain why in the series C, Si, Ge, GaAs, the PBE lattice
constants get worse �more pronounced overestimation� for

TABLE V. The difference in slope �Exc
F1−F2 /�� between two

functionals F1 and F2 for silicon. The total value is decomposed
into the contributions coming from the atomic spheres and the in-
terstitial region. The values are in mRy /bohr3.

F1−F2
�Exc

F1−F2

��

�Exc,sph
F1−F2

��

�Exc,int
F1−F2

��

PBE−LDA −0.245 −0.180 −0.065

PBE−PBEsol −0.131 −0.064 −0.066

PBE−WC −0.136 −0.071 −0.065

PBE−AM05 −0.127 −0.064 −0.063
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FIG. 6. �Color online� �Exc
F1−F2�rmax� /�� for FeAl with F1

=PBE and F2=PBEsol plotted as a function of the integration ra-
dius rmax. The values of �Exc

F1−F2 /�� in the interstitial region and
the whole unit cell are indicated by “Int” and “Total.” The radii of
the atomic spheres are RMT

Fe =2.3 bohr and RMT
Al =2.0 bohr.
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FIG. 7. �Color online� �Exc
F1−F2�rmax� /�� for silicon with F1

=PBE and F2=PBEsol �dotted line� and F1=PBE and F2
=AM05 �solid line� plotted as a function of the integration radius
rmax. The values of �Exc

F1−F2 /�� in the interstitial region are indi-
cated by “Int.” The radius of the atomic sphere is RMT

Si =2.1 bohr.
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heavier elements. Indeed, the larger s gets in the interstitial
region, the more the unit cell will expand, because larger
values of s cause more negative exchange-correlation ener-
gies and thus a larger equilibrium volume.

E. LiF

LiF is a solid where adding gradient corrections to LDA
dramatically increases the lattice constant, similar to Li �see
Table I�. Actually, Li and LiF are solids for which the differ-
ence between the relative errors of LDA and the softest GGA
is among the largest in a testing set of 60 solids �see Fig. 1 of
Ref. 28�.

From the analysis of �Exc
F1−F2 /�� and its spatial parti-

tioning into the atomic �RMT
Li =1.5 bohr and RMT

F

=2.07 bohr� and interstitial regions, we can identify the im-
portant regions for LiF. We observe that the contributions to
�Exc

F1−F2 /�� coming from inside the Li and F atomic
spheres are on the same order of magnitude and, depending
on the considered functionals F1 and F2, may have the same
or opposite sign �see the bottom panel of Fig. 9�. Inside the
Li atomic sphere, the important region is �as in the case of
metallic bcc Li� within a distance of 1–1.5 bohr from the
nucleus and comes from the tails of the Li-1s semicore state.
However, the Li-1s density is modified compared to metallic
Li such that its contribution to the slope is about twice as
large �compare Figs. 4 and 9�. Inside the F sphere there is a
first important region between 0.1 and 0.4 bohr, where the
F-1s core states dominate. For larger distances where the
valence charge density �F-2s ,2p see the middle panel of

Fig. 9� dominates, the F contributions to �Exc
F1−F2 /�� do not

show much structure for most pairs of functionals F1 and
F2. Similarly as in Si, the interstitial contribution is very
important and can even be up to 10 times as large as the
contributions from within the atomic spheres. The electron
density in the interstitial region originates from the tails of
the F-2p electrons �the F-2p radial density r2� is still large at
RMT

F =2.07 bohr; see Fig. 9� and this contributes significantly
to �Exc

F1−F2 /��.
Figure 10 shows the reduced density gradient s in the

�110� plane. We can see that, inside the Li atomic sphere, the
largest values of s occur at distances between r1=1 bohr and
r2=1.5 bohr from the nucleus, which was determined to be
one of the important regions. Around the F atom, the largest
values of s �the green region� start at about 1 bohr from the
nucleus and extend beyond the atomic sphere of F, which is
the main reason why for LiF also the interstitial region is
important.

F. Graphite

In graphite, the carbon atoms which lie in the same hex-
agonal plane are covalently bound, while the interactions be-
tween atoms belonging to different planes are noncovalent
and thus weak. It is well known that the attractive London
dispersion forces, which can be the dominant component in
the interaction energy for such system, are not taken into
account by semilocal functionals, and that this missing dis-
persion interaction is sometimes �depending on the func-

FIG. 8. �Color online� Two-dimensional plot of the reduced den-
sity gradient s in silicon in the �110� plane.

FIG. 9. �Color online� r2� inside the Li �top panel� and F
�middle panel� atomic spheres of Li-1s �semi�core and F-2s and
F-2p valence states in LiF. Bottom: �Exc

F1−F2�rmax� /�� for LiF with
F1=PBE and F2=AM05 as a function of the integration radius
rmax. Note that the contribution to the slope from the interstitial is
much larger �−0.10 mRy /bohr3�.
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tional and the system under consideration� “replaced” with
an artificial attraction that arises due to the nonzero overlap
between the two weakly interacting fragments �e.g., two hex-
agonal planes�. However, the results obtained with semilocal
functionals for such weakly bound systems are very often
quantitatively wrong and this is the reason why functionals
especially designed for such systems have been proposed
�see, e.g., Refs. 69 and 70�.

The lattice constant c �the interlayer distance is c /2� of
graphite was optimized,28 while the in-plane lattice constant
a was kept fixed at the experimental value �2.464 Å�. From
the results shown in Table I and Fig. 11, we can see that a
very broad range of equilibrium values of c are found with
the different functionals. LDA yields a very good value for
c0, and PBEsol is still rather accurate in comparison to the
other GGA functionals that perform very badly. For instance,
AM05 does not show any binding between the graphene lay-
ers.

A two-dimensional plot of s in a plane normal to the hex-
agonal layers is shown in Fig. 12. We can see maxima of s
inside the carbon spheres and also in the interstitial region
between two hexagonal planes. Due to symmetry, minima
appear at mid-distance between two hexagonal planes, and
within the hexagonal plane there is a large region of small s
in the bonding region between two C atoms.

Figure 13 shows, for the equilibrium structure
�c0=6.71 Å=12.68 bohr�, the one-dimensional curves of rs
and s along the path indicated with a black dotted line in Fig.
12 �one C atom is at 0 and the second is at 6.34 bohr�. We
can observe the shell structure �the separation between the 1s
and 2s shells� of the C atom which leads to a peak of s at

0.4 bohr from the nucleus. For distances �0.9 bohr, s in-
creases but decreases again at 2.2 bohr due to symmetry
reasons right in the middle between the two C atoms.

Figure 13 also shows rs and s along the same path, but for
a stretched lattice constant c=10.05 Å=19 bohr. An in-
crease in the rs maximum up to 9.8 bohr is noticed and also

s increases up to nearly 3.5. It was already known in the
literature71,72 that the GGA functionals whose enhancement
factors Fxc violate the Lieb-Oxford bound49 �because
Fxc→
 for s→
� give very shallow or no minimum in
potential-energy surfaces of weakly bound systems, which is
the case of the AM05 functional. The steady increase �i.e.,
divergence� in Fxc

AM05 with s �see Fig. 1� energetically favors
a larger c �the isolated graphene layers are favored� and in
the cases of weak interactions this effect has a much stronger
impact than in the case of strong �e.g., covalent� interactions.

From Fig. 11 we can also see that PBEsol and WC results
are very similar for c�7 Å, which is also in agreement with
Fig. 1, where we can see that Fxc

PBEsol and Fxc
WC are very simi-

lar for s�1.5. At larger c the WC results resemble more the
PBE results �showing just a very slight minimum�, which
is again explainable since the larger s gets, the closer are
Fxc

PBE and Fxc
WC.

IV. DISCUSSION AND SUMMARY

Before coming to the summary of our work, we would
like to briefly make a short review of previous papers that
also present analyses of semilocal functionals. Extensive
analyses of the effect of gradient corrections of GGA func-
tionals were done by Perdew and collaborators in Refs.
34–37. They made a very detailed study of rs, s, and the
relative spin polarization �= ��↑−�↓� / ��↑+�↓� in atoms, mol-
ecules, surfaces, and solids. For their analyses, they used
energy-weighted averages of rs, s, and � �see Eq. �6� of Ref.
34� and considered the variation of these averages with re-
spect to the bond length or lattice constant. They also made
use of distribution functions of rs, s, and � �see Eq. �4� of

FIG. 10. �Color online� Two-dimensional plot of the reduced
density gradient s in LiF in the �110� plane. The atomic sphere radii
�RMT

Li =1.5 bohr and RMT
F =2.07 bohr� are indicated by dashed

circles.
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FIG. 11. �Color online� Total energy of graphite vs the lattice
constant c �the interlayer distance is c /2�. The in-plane lattice con-
stant a was kept fixed at the experimental value �2.464 Å� for all
values of c. The minimum for the AM05 functional is either much
larger than 15 Å or absent. The vertical dashed line represents the
experimental lattice constant �c0=6.71 Å�.
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Ref. 35�. From their analyses, they were able to explain
trends like, for instance, why adding the gradient correction
shortens the H2 bond length,34 while usually the bond lengths
are elongated when a gradient correction is added. More gen-
erally, adding gradient corrections will favor two changes:
denser electron density �i.e., shorter bond lengths� and more
inhomogeneity in the electron density �i.e., larger bond
lengths�. Only in a few cases �e.g., H2� the first change will
win. The analysis we have made and the analyses of Perdew
and collaborators have similarities, but ours were more
aimed at explaining the results for the equilibrium lattice
constants of solids.

In Ref. 33, Philipsen and Baerends tested GGA function-
als for the calculation of the cohesive energy of 3d transition
metals and a detailed analysis of the GGA functionals was
done for Cu. First, they showed that the LDA exchange-
correlation contribution to the cohesive energy of Cu is re-
pulsive in the atomic region and attractive in the bonding
region. Then, they observed that the main effect of adding
gradient correction is to reduce the attractiveness of ex-
change correlation in the bonding region. Another conclusion
of their work is that �for Cu� the regions of space with

s�0.2 do not contribute to the gradient correction.
From the analyses of Fuchs et al.38 and Ruban and

Abrikosov40 on solids, it was concluded that the region of
core-valence overlap is of great importance—a conclusion
that is also supported by our analysis on Li and V, for in-
stance. In a recent study on the performance of semilocal
functionals on solids, Csonka et al.29 showed a correlation
between the maximum values of s in solids and the differ-
ence in results between PBEsol and AM05 functionals.
While AM05 and PBEsol give similar results for solids with
small value of the maximum of s �e.g., 4d transition metals�,
it is not the case for solids with larger maximum of s �ionic
solids and alkali metals�.

In their analyses, Mattsson and collaborators �see Ref. 73
and references therein� pointed out the need to take into ac-
count the different amounts of surface between two different
structures when their energies �calculated with common
semilocal functionals� are compared. Their definition of “sur-
face” also includes internal surfaces like, for example, the
surface around the large interstitial region in Si.73 Related to
this concept of surfaces, we mention the study of Stroppa
and Kresse74 of the adsorption of the CO molecule on the
late 4d and 5d transition-metal surfaces. From their results,
they concluded that there is no semilocal functional that is
able to yield accurate results for different properties �struc-
tural and energetical� and types of systems �finite and infi-
nite� at the same time.

In the present work, the spatial distribution of the Wigner-
Seitz radius rs and reduced density gradient s has been stud-
ied in selected solids. We considered lithium �which is close
to the homogeneous electron gas�, vanadium �a 3d transition

FIG. 12. �Color online� Two-dimensional plot of the reduced
density gradient s in graphite within a plane normal to the hexago-
nal layers.

FIG. 13. �Color online� One-dimensional plot of rs �top� and s
�bottom� in graphite at the experimental equilibrium geometry �c0

=6.71 Å=12.68 bohr� �black solid lines� and at a stretched geom-
etry �c=10.05 Å=19 bohr� �blue dashed lines� from one C atom to
the next along the c axis �the path is indicated with a black dotted
line in Fig. 12�.

INSIGHT INTO THE PERFORMANCE OF GGA… PHYSICAL REVIEW B 80, 195109 �2009�

195109-11



metal�, FeAl �an intermetallic compound�, silicon �a semi-
conductor�, LiF �an ionic insulator�, and graphite �whose
hexagonal layers are bound by weak interactions�. We have
identified which region in space is energetically important
for the structural properties. For this purpose we studied the
variation of the exchange-correlation energy with respect to
the unit-cell volume. For all systems the important region
includes a radial shell around the atoms, which separates the
semicore from the valence electrons. For open structures
such as silicon or graphite, but also inhomogeneous systems
like ionic compounds �e.g., MgO or LiF�, also the interstitial
region is important since even small contributions �from the
tails of the atomic densities� will sum up over a large vol-
ume.

Using the averages of rs and s in the energetically impor-
tant region, a better understanding of the “unusual trends” in
the lattice constants �e.g., in lithium� could be obtained. It
turns out that it is not only the value of the enhancement
factor Fxc, but also its derivatives with respect to rs and s
which determine the equilibrium lattice constant.

Further, during our analysis we noticed that, in the con-
sidered solids, values of s larger than 1.5 �2 for light alkali
metals� and values of rs larger than 4 bohr �7 bohr for
stretched graphite� do not occur. Therefore, it is Fxc�rs ,s�
�and its rs and s derivatives� up to these values of rs and s
which determines the geometry of solids, while the behavior

of Fxc�rs ,s� for larger rs and s is completely unimportant.
Note that this statement is not true for cohesive energies and
the geometry of finite systems �molecules�.

To conclude, we think that the general limits of accuracy
of semilocal exchange-correlation functionals have not yet
been reached. Nevertheless, to improve the geometry of sol-
ids over the currently best GGAs �e.g., WC, PBEsol, or
AM05� it will be necessary to consider more sophisticated
semilocal functionals, which may lead to improvements for
cases where functionals such as PBEsol, WC, or AM05 still
have large errors �e.g., 3d or heavy alkali-earth metals�.
Meta-GGAs,30–32 which due to the use of the kinetic-energy
density are more flexible �but still of the semilocal form�,
could give an improvement �see, e.g., Ref. 75�; but, until
now, only a few such meta-GGA functionals have been pro-
posed and there is room for improvement. An analysis like
the one done in the present work, but including also the
kinetic-energy density, could certainly help in deriving more
accurate meta-GGA functionals.
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